If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-20=59x
We move all terms to the left:
4x^2-20-(59x)=0
a = 4; b = -59; c = -20;
Δ = b2-4ac
Δ = -592-4·4·(-20)
Δ = 3801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-59)-\sqrt{3801}}{2*4}=\frac{59-\sqrt{3801}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-59)+\sqrt{3801}}{2*4}=\frac{59+\sqrt{3801}}{8} $
| 4x+4(x-1)=9x+13 | | .88x+2x=25 | | 8-8s+2s=-6-8s | | 13x=102 | | 7d+5d=-14+10 | | 8s+9=9s | | 8s+9=9 | | x^2-18.5x+200=0 | | 114=(3-1/3)p | | 9x+3+5x+-2+11x-21=180 | | 50=50+(n-40)/4 | | x-7/4+2x/3=-43/12 | | F(x)=x2-14x | | 4/1=z/10 | | 2b+4=104 | | G+6g-4=9g+6 | | 7x^2-4x=75 | | F(x)=x2-14 | | 3x+17+5x+37=180 | | -4x+3=-4x+3 | | 10+5p=8p-8 | | -4(2x+1)+12=0 | | 3x10=5x-8 | | -2(n-2)=-3-2n | | x^2-5x-5.5=0 | | -2k-10=-7k+10 | | 5^x^2-8x+12=5^x^2-8x+12 | | y=-10. | | 6(2x+4)+5(2x+3)+2=22x+42 | | 5+3g=-10+6g | | (5x-8)=(8x+10) | | (5x-8)°=(8x+10)° |